

 Navigation

 	
 index

 	Merchant Documentation 0.07 documentation

Welcome to Merchant’s documentation!

Contents:

	Overview

	Install Merchant

	Credit Card

	Gateways
	On-site Processing
	Authorize.Net

	Braintree Payments Server to Server

	eWay

	PayPal

	Stripe Payments

	Paylane

	WePay

	Beanstream

	Chargebee

	Bitcoin

	Off-site Processing
	PayPal

	Google Checkout

	RBS WorldPay

	Amazon FPS

	Braintree Payments Transparent Redirect

	Stripe

	eWAY

	Authorize.Net Direct Post Method

	Signals

	Writing your own gateway

	Customizing the inbuilt Gateway/Integrations

	Contributing to Merchant

	Changelist

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2012, Team Agiliq.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	Merchant Documentation 0.07 documentation

Index

 C
 | E
 | R

C

 	

 	check_transaction() (built-in function)

E

 	

 	EwayIntegration (built-in class)

R

 	

 	request_access_code() (built-in function)

 Copyright 2012, Team Agiliq.
 Created using Sphinx 1.3.5.

 offsite/authorize_net_dpm.html

 Navigation

 		
 index

 		Merchant Documentation 0.07 documentation »

Authorize.Net Direct Post Method

Authorize.Net Direct Post Method [http://developer.authorize.net/api/dpm] is a service offered by
Authorize.Net [http://authorize.net/] to reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

		LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the
dashboard.

		TRANSACTION_KEY: The Transaction key is used to sign the generated form with
a shared key to validate against form tampering.

		MD5_HASH: This attribute is used to generate a hash that is verified against
the hash sent by Authorize.Net to confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

		__init__(self): The constructor that configures the Authorize.Net Integration
environment setting it either to production or sandbox mode based on the value of
settings.MERCHANT_TEST_MODE.

		
		form_class(self): Returns the form class that is used to generate the form.

		Defaults to billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

		generate_form(self): Renders the form and generates some precomputed field
values.

		service_url(self): Returns the Authorize.net url to be set on the form.

		verify_response(self, request): Verifies if the relay response originated
from Authorize.Net.

		get_urls(self): The method sets the url to which Authorize.Net sends a relay
response, redirects on a success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
 (r'^authorize_net/', include(integration.urls)),
)

		authorize_net_notify_handler(self, request): The view method that handles the
verification of the response, firing of the signal and sends out the redirect
snippet to Authorize.Net.

		authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

		authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,
 'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
 'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
 'x_recurring_bill': 'F',
 }
int_obj.add_fields(fields)
return render_to_response("some_template.html",
 {"adp": int_obj},
 context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',
 (r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

 © Copyright 2012, Team Agiliq.
 Created using Sphinx 1.3.5.

offsite/amazon_fps.html

 Navigation

 		
 index

 		Merchant Documentation 0.07 documentation »

Amazon Flexible Payment Service

Amazon FPS [http://aws.amazon.com/fps/], is a service that allows for building very flexible payment systems.
The service can be classified as a part Gateway and part Integration (offsite processor).
This is because the customer is redirected to the Amazon site where he authorizes the
payment and after this the customer is redirected back to the merchant site with a token
that is used by the merchant to transact with the customer. In plain offsite processors,
the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant
takes a couple of steps more.

The documentation for the service is available at Amazon FPS Docs [http://aws.amazon.com/documentation/fps/].

Note

This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

		AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

		AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the
user’s dashboard. Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {
 "amazon_fps": {
 "AWS_ACCESS_KEY": "???",
 "AWS_SECRET_ACCESS_KEY": "???"
 }
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

		__init__(options = {}): The constructor takes a dictionary of options that are
used to initialize the underlying FPSConnection that is bundled with boto.

		service_url: A property that returns the API Endpoint depending on whether the
the integration is in test_mode or not.

		link_url: A property that returns the link which redirects the customer to the
Amazon Payments site to authorize the transaction.

		purchase(amount, options={}): The method that charges a customer right away for
the amount amount after receiving a successful token from Amazon. The options
dictionary is generated from the return_url on successful redirect from the
Amazon payments page. This method returns a dictionary with two items, status
representing the status and response representing the response as described
by boto.fps.response.FPSResponse.

		authorize(amount, options={}): Similar to the purchase method except that
it reserves the payment and doesn’t not charge until a capture (settle) is not
called. The response is the same as that of purchase.

		capture(amount, options={}): Captures funds from an authorized transaction. The
response is the same as the above two methods.

		credit(amount, options={}): Refunds a part of full amount of the transaction.

		void(identification, options={}): Cancel/Null an authorized transaction.

		fps_ipn_handler: A method that handles the asynchronous HTTP POST request from
the Amazon IPN and saves into the AmazonFPSResponse model.

		fps_return_url: This method verifies the source of the return URL from Amazon
and directs to the transaction.

		transaction: This is the main method that charges/authorizes funds from the
customer. This method has to be subclassed to implement the logic for the
transaction on return from the Amazon Payments page.

Example

In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file
should be available under <app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
 # The class name is based on the filename.
 # So if the files exists in <app>/integrations/fps_integration.py
 # then the class name should be FpsIntegration
 def transaction(self, request):
 # Logic to decide if the user should
 # be charged immediately or funds
 # authorized and then redirect the user
 # Below is an example:
 resp = self.purchase(10, {...})
 if resp["status"] == "Success":
 return HttpResponseRedirect("/success/")
 return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',
 (r'^amazon_fps/', include(amazon_fps.urls)),
 # You'll have to register /amazon_fps/fps-notify-handler/ in the
 # Amazon FPS admin dashboard for the notification URL
)

In views.py:

from billing import get_integration
def productPage(request):
 amazon_fps = get_integration("fps")
 url_scheme = "http"
 if request.is_secure():
 url_scheme = "https"
 domain = RequestSite(request).domain
 fields = {"transactionAmount": "100",
 "pipelineName": "SingleUse",
 "paymentReason": "Merchant Test",
 "paymentPage": request.build_absolute_uri(),
 # Send the correct url where the redirect should happen
 "returnURL": "%s://%s%s" % (url_scheme,
 domain,
 reverse("fps_return_url")),
 }
 # You might want to save the fields["callerReference"] that
 # is auto-generated in the db or session to uniquely identify
 # this user (or use the user id as the callerReference) because
 # amazon passes this callerReference back in the return URL.
 amazon_fps.add_fields(fields)
 return render_to_response("some_template.html",
 {"fps": amazon_fps},
 context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

 © Copyright 2012, Team Agiliq.
 Created using Sphinx 1.3.5.

install.html

 Navigation

 		
 index

 		Merchant Documentation 0.07 documentation »

Installing Merchant

You can use any of the following methods to install merchant.

		The recommended way is to install from PyPi [http://pypi.python.org/pypi/django-merchant]:

pip install django-merchant

		If you are feeling adventurous, you might want to run the code off
the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

		Install the dependencies for the gateways as prescribed in the individual
gateway doc.

		Reference the billing app in your settings INSTALLED_APPS.

Running the Test Suite

By default, the test suite is configured to run tests for all the gateways and
integrations:

python manage.py test billing

This might fail if you have not configured (either the settings attributes or
the dependencies) the gateways and integrations.

If you are planning to integrate your app with a specific gateway/integration
then you might wish to run only that apps test suite. For example, to run the
Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

 © Copyright 2012, Team Agiliq.
 Created using Sphinx 1.3.5.

offsite/rbs_worldpay.html

 Navigation

 		
 index

 		Merchant Documentation 0.07 documentation »

WorldPay

WorldPay [http://www.rbsworldpay.com/], provides a hosted payments page for offsite transactions for
merchants who cannot guarantee PCI compliance. The documentation for
the service is available here [http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK].

After a transaction, WorldPay pings the notification URL and all the
data sent is stored in the RBSResponse model instance that can be
viewed from the django admin.

The settings attribute required for this integration are:

		MD5_SECRET_KEY: The MD5 secret key chosen by the user
while signing up for the WorldPay Hosted Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {
 "world_pay": {
 "MD5_SECRET_KEY": "???"
 }
 ...
}

Example

In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',
 (r'^world_pay/', include(world_pay.urls)),
 # You'll have to register /world_pay/rbs-notify-handler/ in the
 # WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
 <input type="hidden" name="futurePayType" id="id_futurePayType" />
 <input type="hidden" name="intervalUnit" id="id_intervalUnit" />
 <input type="hidden" name="intervalMult" id="id_intervalMult" />
 <input type="hidden" name="option" id="id_option" />
 <input type="hidden" name="noOfPayments" id="id_noOfPayments" />
 <input type="hidden" name="normalAmount" id="id_normalAmount" />
 <input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
 <input type="hidden" name="startDelayMult" id="id_startDelayMult" />
 <input type="hidden" name="instId" value="WP_ID" id="id_instId" />
 <input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
 <input type="hidden" name="amount" value="100" id="id_amount" />
 <input type="hidden" name="currency" value="USD" id="id_currency" />
 <input type="hidden" name="desc" value="Test Item" id="id_desc" />
 <input type="hidden" name="testMode" value="100" id="id_testMode" />
 <input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
 <input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
 <input type='submit' value='Pay through WorldPay'/>
</form>

 © Copyright 2012, Team Agiliq.
 Created using Sphinx 1.3.5.

custom_gateway.html

 Navigation

 		
 index

 		Merchant Documentation 0.07 documentation »

Writing a new gateway

Writing a new gateway for Merchant [http://github.com/agiliq/merchant] is very easy. Here are the steps
to follow to write a new gateway:

		Create a new gateway file under the billing.gateways module which
should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly,
Authorize.Net, would have authorize_net_gateway.py.

		Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net,
it would be AuthorizeNetGateway.

		Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

 © Copyright 2012, Team Agiliq.
 Created using Sphinx 1.3.5.

offsite/braintree_payments.html

 Navigation

 		
 index

 		Merchant Documentation 0.07 documentation »

Braintree Payments Transparent Redirect

Braintree Payments Transparent Redirect [http://www.braintreepayments.com/gateway/api] is a service offered by
Braintree Payments [http://www.braintreepayments.com/] to reduce the complexity of PCI compliance.

Note

This integration makes use of the official braintree [http://pypi.python.org/pypi/braintree/] python package offered
by Braintree Payments. Please install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

		__init__(self, options=None): The constructor method that configures the
Braintree environment setting it either to production or sandbox mode based on
the value of settings.MERCHANT_TEST_MODE.

		service_url(self): A property that provides the URL to which the Transparent
Redirect form is submitted.

		get_urls(self): The method sets the url to which Braintree redirects
after the form submission is successful. This method is generally mapped
directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
 (r'^braintree/', include(braintree.urls)),
)

		braintree_notify_handler(self, request): The view method that handles the
confirmation of the transaction after successful redirection from Braintree.

		braintree_success_handler(self, request, response): If the transaction is
successful, the braintree_notify_handler calls the braintree_success_handler
which renders the billing/braintree_success.html with the response
object. The response object is a standard braintree result described here [http://www.braintreepayments.com/docs/python/transactions/result_handling].

		braintree_failure_handler(self, request, response): If the transaction
fails, the braintree_notify_handler calls the braintree_failure_handler
which renders the billing/braintree_error.html with the response which
is a standar braintree error object.

		generate_tr_data(self): The method that calculates the tr_data [http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data] to
prevent a form from being tampered post-submission.

		generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data
with the self.fields (added through either the add_fields or add_field
methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {
 "order_id": "some_unique_id",
 "type": "sale",
 "options": {
 "submit_for_settlement": True
 },
 },
 "site": "%s://%s" %("https" if request.is_secure() else "http",
 RequestSite(request).domain)
 }
braintree_obj.add_fields(fields)
return render_to_response("some_template.html",
 {"bp": braintree_obj},
 context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',
 (r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

 © Copyright 2012, Team Agiliq.
 Created using Sphinx 1.3.5.

signals.html

 Navigation

 		
 index

 		Merchant Documentation 0.07 documentation »

Signals

The signals emitted by Merchant [http://github.com/agiliq/merchant] are:

		transaction_was_successful(sender, type=..., response=...): This signal is
dispatched when a payment is successfully transacted. The sender is the
object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

		purchase

		authorize

		capture

		credit

		void

		store

		unstore

response is the actual response object that is sent after the success.
Please consult the individual gateway docs for the response object.

		transaction_was_unsuccessful(sender, type=..., response=...): This signal
is dispatched when a payment fails. The sender is the object which has
dispatched the signal. type is the kind of transation. Current choices for
type are:

		purchase

		authorize

		capture

		credit

		void

		store

		unstore

response is the actual response object that is sent after the success.

Note

Some gateways are implemented to raise an error on failure. This exception
may be passed as the response object. Please consult the docs to confirm.

 © Copyright 2012, Team Agiliq.
 Created using Sphinx 1.3.5.

offsite/stripe_integration.html

 Navigation

 		
 index

 		Merchant Documentation 0.07 documentation »

Stripe Payment Integration

Stripe Payment Integration is a service offered by
Stripe Payment [https://stripe.com] to reduce the complexity of PCI compliance.

Note

This integration makes use of the official stripe [http://pypi.python.org/pypi/stripe/] python package offered
by Stripe Payments. Please install it before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

		__init__(self, options=None): The constructor method that configures the
stripe setting

		get_urls(self): The method sets the url to which the token is sent
after the it is obtained from Stripe. This method is generally mapped
directly in the urls.py.

from billing import get_integration

stripe = get_integration("stripe")

urlpatterns += patterns('',
 (r'^stripe/', include(stripe_obj.urls)),
)

		transaction(self, request): The method that receives the Stripe Token after
successfully validating with the Stripe servers. Needs to be subclassed to include
the token transaction logic.

		generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
 class transaction(self, request):
 # The token is received in the POST request
 resp = self.stripe_gateway.purchase(100, request.POST["stripeToken"])
 if resp["status"] == "SUCCESS":
 # Redirect if the transaction is successful
 ...
 else:
 # Transaction failed
 ...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",
 {"stripe_obj": stripe_obj},
 context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',
 (r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

 © Copyright 2012, Team Agiliq.
 Created using Sphinx 1.3.5.

changelist.html

 Navigation

 		
 index

 		Merchant Documentation 0.07 documentation »

Changes

0.09

		Removed Samurai gateway and integration

0.08

		Added bitcoin backend

		Bugfixes to eWay, paypal integration and authorize.net

		Google Checkout shipping, tax rate and private data support

		Changes to Amazon FPS to work with latest boto. Addition of new fields to
the FPS response model. A backwards incompatible change

		Made merchant django v1.5 compatible

		Fixes in the chargebee gateway broken by changes in the ‘requests’ api

		Changes to the example to prevent empty forms from raising a Server Error

0.07

		Added Chargebee support

		Added Beanstream gateway

0.06

		Added WePay gateway

		Added Authorize.Net Direct Post Method integration

0.05

		Added Paylane gateway support.

0.04

		Backwards incompatible version.

		Changes in the settings attributes. Now there is a single attribute
for storing the configuration of all gateways and integrations. Check
the docs for details.

		Changed the usage of the template tags. Refer the docs for details.

		Added a display_name to the integration object. Shouldn’t affect users.

0.03

		Added support for Stripe and Samurai gateways and integrations.

0.02

		Added a setup.py and uploaded the package to pypi

0.01

		Initial commit.

 © Copyright 2012, Team Agiliq.
 Created using Sphinx 1.3.5.

offsite/paypal.html

 Navigation

 		
 index

 		Merchant Documentation 0.07 documentation »

PayPal Website Payments Standard

PayPal Website Payments Standard [https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard] (PWS) is an offsite payment processor. This
method of payment is implemented in merchant as a wrapper on top of
django-paypal [https://github.com/dcramer/django-paypal]. You need to install the package to be able to use this
payment processor.

For a list of the fields and settings attribute expected, please refer to the
PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the
data sent is stored in the PayPalIPN model instance that can be
viewed from the django admin.

Test or Live Mode

By default the form renders in test mode with POST against sandbox.paypal.com.
Add following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
 ...,
 'paypal.standard.pdt',
 ...)

 MERCHANT_SETTINGS = {
 ...,
 'pay_pal': {
 "WPP_USER" : '...',
 "WPP_PASSWORD" : '...',
 "WPP_SIGNATURE" : '...',
 "RECEIVER_EMAIL" : '...',
 # Below attribute is optional
 "ENCRYPTED": True
 }
 ...}

 PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example

In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',
 (r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1,
amount_1 etc, for e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
 <input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
 <input type="hidden" name="amount" value="100" id="id_amount" />
 <input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
 <input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
 <input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
 <input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
 <input type="hidden" name="invoice" value="UID" id="id_invoice" />
 <input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
 <input type="hidden" name="charset" value="utf-8" id="id_charset" />
 <input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
 <input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
 <input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />
</form>

 © Copyright 2012, Team Agiliq.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

gateways/beanstream_gateway.html

 Navigation

 		
 index

 		Merchant Documentation 0.07 documentation »

Beanstream

Beanstream [http://www.beanstream.com/site/ca/index.html] is a gateway headquartered in Canada and offering payment processing
across North America.

Note

You will require the beanstream python package [http://github.com/dragonx/beanstream] maintained by the community.

Settings attributes required (optional if you are passing them while initializing
the gateway) for this integration are:

		MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the
account dashboard.

		LOGIN_COMPANY: The company name as visible from the account settings in the
dashboard.

		LOGIN_USER: The username used to login to the account dashboard.

		LOGIN_PASSWORD: The password used to login to the account dashboard.

		HASH_ALGORITHM: This is optional but required if you have enabled hashing in
account dashboard. The values may be one of SHA-1 and MD5.

		HASHCODE: If the above attribute is enabled, then set this attribute to the
hash value you’ve setup in the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {
 "beanstream": {
 "MERCHANT_ID": "???",
 "LOGIN_COMPANY": "???",
 "LOGIN_USER": "???",
 "LOGIN_PASSWORD": "???",
 # The below two attributes are optional
 "HASH_ALGORITHM": "???",
 "HASHCODE": "???",
 }
 ...
}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",
 month=10, year=2011,
 number="4111111111111111",
 verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

 © Copyright 2012, Team Agiliq.
 Created using Sphinx 1.3.5.

gateways/chargebee_gateway.html

 Navigation

 		
 index

 		Merchant Documentation 0.07 documentation »

Chargebee

Chargebee [http://www.chargebee.com/] is a SAAS that makes subscription billing easy to handle. They also
provide the functionality to plug to multiple gateways in the backend.

Note

You will require the requests [http://docs.python-requests.org/en/latest/index.html] package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing
the gateway) for this integration are:

		SITE: The name of the Chargebee app (or site as they refer). The URL is
generally of the form “https://{site}.chargebee.com/”.

		API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {
 "chargebee": {
 "SITE": "some-test",
 "API_KEY": "???",
 }
 ...
}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",
 month=10, year=2011,
 number="4111111111111111",
 verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,
 options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,
 options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

 © Copyright 2012, Team Agiliq.
 Created using Sphinx 1.3.5.

gateways/bitcoin_gateway.html

 Navigation

 		
 index

 		Merchant Documentation 0.07 documentation »

Bitcoin Gateway

The Bitcoin gateway implements the Bitcoin digital currency [http://bitcoin.org/].

It is implemented using the JSON-RPC API as described in the Merchant Howto [https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin].

Note

The Bitcoin gateway depends on the bitcoin-python library which
can be installed from pypi

Usage

		Add the following attributes to your settings.py:

"bitcoin": {
 "RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
 "RPCPASSWORD": "",
 "HOST": "",
 "PORT": "",
 "ACCOUNT": "",
 "MINCONF": 1,
},

		Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

 © Copyright 2012, Team Agiliq.
 Created using Sphinx 1.3.5.

_static/comment-close.png

gateways/we_pay_gateway.html

 Navigation

 		
 index

 		Merchant Documentation 0.07 documentation »

WePay Payments

WePay.com [https://www.wepay.com/] is a service that lets you accept payments not just from
credit cards but also from bank accounts.

WePay works slightly differently and is a hybrid between a Gateway
and an Integration but should still be fairly easy to use.

Note

You will require the official wepay [http://pypi.python.org/pypi/wepay/] python package offered by WePay.

Settings attributes required for this integration are:

		CLIENT_ID: This attribute refers to the application id that can be obtained
from the account dashboard.

		CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

		ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments
for yourself, then this attribute is compulsory. If you are accepting payments for
other users (say in a marketplace setup), then it is optional in the settings.py
file but has to be passed in the options dictionary (with the key account_id)
in the views.

		ACCESS_TOKEN: The OAuth2 access token acquired from the user after the
installation of the WePay application. If you are accepting payments for yourself,
then this attribute is compulsory. If you are accepting payments for other users
(say in a marketplace setup), then it is optional in the settings.py file but
has to be passed in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {
 "we_pay": {
 "CLIENT_ID": "???",
 "CLIENT_SECRET": "???",
 "ACCESS_TOKEN": "???",
 "ACCOUNT_ID": "???"
 }
 ...
}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",
 month=10, year=2012,
 number="4242424242424242",
 verification_value="100")

def we_pay_purchase(request):
 # Bill the user for 10 USD
 # Credit card is not required here because the user
 # is redirected to the wepay site for authorization
 resp = wp.purchase(10, None, {
 "description": "Product Description",
 "type": "GOODS",
 "redirect_uri": "http://example.com/success/redirect/"
 })
 if resp["status"] == "SUCCESS":
 return HttpResponseRedirect(resp["response"]["checkout_uri"])
 ...

Authorize the card for 1000 USD
def we_pay_authorize(request):
 # Authorize the card, the amount is not required.
 resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
 resp["checkout_id"]
 ...

Capture funds from a previously authorized transaction
def we_pay_capture(request):
 # No ability to partially capture and hence first argument is None
 resp = wp.capture(None, '<authorization_id>')
 ...

Refund a transaction
def we_pay_refund(request):
 # Refund completely
 resp = wp.credit(None, '<checkout_id>')
 ...
 # Refund partially from a transaction charged $15
 resp = wp.credit(10, '<checkout_id>')
 ...

Store Customer and Credit Card information in the vault
def we_pay_store(request)
 resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
 ...

A recurring plan for $100/month
def we_pay_recurring(request):
 options = {"period": "monthly", "start_time": "2012-01-01",
 "end_time": "2013-01-01", "auto_recur": "true",
 "redirect_uri": "http://example.com/redirect/success/"}
 resp = wp.recurring(100, None, options = options)
 if resp["status"] == "SUCCESS":
 return HttpResponseRedirect(resp["response"]["preapproval_uri"])
 ...

 © Copyright 2012, Team Agiliq.
 Created using Sphinx 1.3.5.

_static/minus.png

_static/comment.png

offsite_processing.html

 Navigation

 		
 index

 		Merchant Documentation 0.07 documentation »

Off-site Processing

Off-site processing is the payment mechanism where the customer is
redirected to the payment gateways site to complete the transaction
and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered
on the payment gateway’s site, the merchant website may not comply
to PCI standards [http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard]. This mode of payment is recommended when the
merchant website is not in a position to use SSL certificates, not
able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through
Integrations (name derived from Active Merchant [http://activemerchant.org/]).

Integration

An Integration much like a Gateway is a Python class.
But unlike a Gateway which is used in a view, an Integration renders
a form (usually with hidden fields) through a template tag. An
integration may also support asynchronous and real-time transaction
status handling through callbacks or notifiers like the PayPal IPN [https://www.paypal.com/ipn]

Here is a reference of the attributes and methods of the Integration
class:

Attributes

		fields: Dictionary of form fields that have to be rendered in the
template.

		test_mode: Signifies if the integration is in a test mode or
production. The default value for this is taken from the MERCHANT_TEST_MODE
setting attribute.

		display_name: A human readable name that is generally used to tag the
errors when the integration is not correctly configured.

Methods

		__init__(options={}): The constructor for the Integration.
The options dictionary if present overrides the default items of the
fields attribute.

		add_field(key, value): A method to modify the fields attribute.

		add_fields(fields): A method to update the fields attribute with
the fields dictionary specified.

		service_url: The URL on the form where the fields data is posted.
Overridden by implementations.

		get_urls: A method that returns the urlpatterns for the notifier/
callback. This method is modified by implementations.

		urls: A property that returns the above method.

Helper Function

Very much like Gateways, Integrations have a method of easily
referencing the corresponding integration class through the get_integration
helper function.

		get_integration(integration_name, *args, **kwargs): Returns the
Integration class for the corresponding integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

 © Copyright 2012, Team Agiliq.
 Created using Sphinx 1.3.5.

overview.html

 Navigation

 		
 index

 		Merchant Documentation 0.07 documentation »

Merchant: Pluggable and Unified API for Payment Processors

Merchant [http://github.com/agiliq/merchant], is a django [http://www.djangoproject.com/] app that offers a uniform api and pluggable interface to
interact with a variety of payment processors. It is heavily inspired from Ruby’s
ActiveMerchant [http://activemerchant.org/].

Overview

Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

 © Copyright 2012, Team Agiliq.
 Created using Sphinx 1.3.5.

customize.html

 Navigation

 		
 index

 		Merchant Documentation 0.07 documentation »

Customizing Merchant

While we make all attempts to cover most of the functionality of the payment
processors but may fall short sometimes. There is absolutely no need to worry
as the gateway and integration objects are extensible.

Merchant [https://github.com/agiliq/merchant] looks for gateways and integration objects under every INSTALLED_APPS
in settings.py. So it is possible for you to write your custom or modified
objects within your app without having to patch the merchant code.

Note

Most of what is written below will also be applicable for gateways and you will
have to replace instances of integration with gateway.

Suppose you want to extend the Braintree Payments Integration,
to render a different template on success instead of the default billing/braintree_success.html.

Here is the process:

		In any of the settings.INSTALLED_APPS, create an integrations module
(in layman’s term an integrations directory with an __init__.py file under that
directory).

		Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note

The naming of the file and class follows a simple rule. The filename is split on
underscores and each element of the split sequence is capitalized to obtain the
class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
 def braintree_success_handler(self, request, response):
 return render_to_response("my_new_success.html",
 {"resp": response},
 context_instance=RequestContext(request))

		Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

 © Copyright 2012, Team Agiliq.
 Created using Sphinx 1.3.5.

credit_card.html

 Navigation

 		
 index

 		Merchant Documentation 0.07 documentation »

Credit Card

The CreditCard class is a helper class with some useful methods mainly for
validation. This class is available in billing.utils.credit_card.

Attribute Reference

		regexp: The compiled regular expression that matches all card numbers for
the card issuing authority. For the CreditCard class, this is None. It
is overridden by subclasses.

		card_type: Points to a one of CreditCard‘s subclasses. This attribute is
set by the validate_card method of the selected gateway.

		card_name: Card issuing authority name. Generally not required, but some
gateways expect the user to figure out the credit card type to send with
the requests.

Method Reference

		__init__: This method expects 6 compulsory keyword arguments. They are

		first_name: The first name of the credit card holder.

		last_name: The last name of the credit card holder.

		month: The expiration month of the credit card as an integer.

		year: The expiration year of the credit card as an integer.

		number: The credit card number (generally 16 digits).

		verification_value: The card security code (CVV2).

		is_luhn_valid: Checks the validity of the credit card number by using the
Luhn’s algorithm and returns a boolean. This method takes no arguments.

		is_expired: Checks if the expiration date of the card is beyond today and
returns a boolean. This method takes no arguments.

		valid_essential_attributes: Verifies if all the 6 arguments provided to the
__init__ method are filled and returns a boolean.

		is_valid: Checks the validity of the card by calling the is_luhn_valid,
is_expired and valid_essential_attributes method and returns a boolean.
This method takes no arguments.

		expire_date: Returns the card expiry date in the “MM-YYYY” format. This is
also available as a property.

		
		name: Returns the full name of the credit card holder by concatenating the

		first_name and last_name. This is also available as a property.

Subclasses

The various credit cards and debit cards supported by Merchant [http://github.com/agiliq/merchant] are:

Credit Cards

		Visa
		card_name = “Visa”

		regexp = re.compile(‘^4d{12}(d{3})?$’)

		MasterCard
		card_name = “MasterCard”

		regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

		Discover
		card_name = “Discover”

		regexp = re.compile(‘^(6011|65d{2})d{12}$’)

		AmericanExpress
		card_name = “Amex”

		regexp = re.compile(‘^3[47]d{13}$’)

		DinersClub
		card_name = “DinersClub”

		regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

		JCB
		card_name = “JCB”

		regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

		Switch
		card_name = “Switch”

		regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

		Solo
		card_name = “Solo”

		regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

		Dankort
		card_name = “Dankort”

		regexp = re.compile(‘^5019d{12}$’)

		Maestro
		card_name = “Maestro”

		regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

		Forbrugsforeningen
		card_name = “Forbrugsforeningen”

		regexp = re.compile(‘^600722d{10}$’)

		Laser
		card_name = “Laser”

		regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

		all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

		all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

		all_cards = all_credit_cards + all_debit_cards

 © Copyright 2012, Team Agiliq.
 Created using Sphinx 1.3.5.

gateways/authorize_net.html

 Navigation

 		
 index

 		Merchant Documentation 0.07 documentation »

Authorize.Net Gateway

This gateway implements the Authorize.Net Advanced Integration Method (AIM) [http://developer.authorize.net/api/aim/].

Usage

		Setup a test account [http://developer.authorize.net/testaccount/] with Authorize.Net.

		Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {
 "authorize_net": {
 "LOGIN_ID" : "???",
 "TRANSACTION_KEY" : "???"
 }
 ...
}

		Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

 © Copyright 2012, Team Agiliq.
 Created using Sphinx 1.3.5.

onsite_processing.html

 Navigation

 		
 index

 		Merchant Documentation 0.07 documentation »

On-site Processing

Onsite processing refers to the payment mechanism where the customer stays
on the merchant website and the authentication is done by the merchant
website with the gateway in the background.

Merchant websites need to comply with PCI standards [http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard] to be able to securely
carry out transactions.

On-site processing for payment gateways is implemented by using subclasses
of the Gateway class.

 © Copyright 2012, Team Agiliq.
 Created using Sphinx 1.3.5.

gateways/paypal_gateway.html

 Navigation

 		
 index

 		Merchant Documentation 0.07 documentation »

PayPal Gateway

Note

This gateway is a wrapper to the django-paypal [http://github.com/dcramer/django-paypal/] package. Please download
it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro [https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro]
product.

Usage

		Setup a PayPal Website Payments Pro account and obtain the API details.

		Add paypal.standard and paypal.pro (apps from django-paypal [http://github.com/dcramer/django-paypal/]) to the
INSTALLED_APPS in your settings.py.

		Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {
 "pay_pal": {
 "WPP_USER" : "???",
 "WPP_PASSWORD" : "???",
 "WPP_SIGNATURE" : "???"
 }
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

		Run python manage.py syncdb to get the response tables.

		Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note

The PayPal gateway expects you pass the request object as a part of
the options dictionary because the client’s IP address may be used for
fraud detection.

 © Copyright 2012, Team Agiliq.
 Created using Sphinx 1.3.5.

gateways/eway_gateway.html

 Navigation

 		
 index

 		Merchant Documentation 0.07 documentation »

eWay Gateway

The eWay gateway implements the eWay Hosted Payment API [http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx].

Note

Since the eWay payment gateway uses SOAP [http://en.wikipedia.org/wiki/SOAP], the API has been implemented
using the suds [https://fedorahosted.org/suds/] SOAP library for python. You’ll require it to be able to
use this gateway.

Usage

		Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {
 "eway": {
 "CUSTOMER_ID": "???",
 "USERNAME": "???",
 "PASSWORD": "???",
 }
}

		Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

 © Copyright 2012, Team Agiliq.
 Created using Sphinx 1.3.5.

contributing.html

 Navigation

 		
 index

 		Merchant Documentation 0.07 documentation »

Contributing to Merchant

While there is no requirement for you to contribute your new gateway code or
changes back to the upstream project [http://github.com/agiliq/merchant], you can play a good samaritan by
contributing back to the project and helping scores of people.

Here are the steps to follow to contribute back to Merchant [http://github.com/agiliq/merchant]:

		Fork the project from it’s github page [http://github.com/agiliq/merchant].

		Make the changes in your fork.

		File an issue at the github page [http://github.com/agiliq/merchant] and enclose a pull request.

Note

If you want to include a new gateway, we request you to include a few
tests (probably using the current tests as a template).

		Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening
an issue.

 © Copyright 2012, Team Agiliq.
 Created using Sphinx 1.3.5.

_static/ajax-loader.gif

gateways/braintree_payments.html

 Navigation

 		
 index

 		Merchant Documentation 0.07 documentation »

Braintree Payments Server to Server

Braintree Payments Server to Server [http://www.braintreepayments.com/gateway/api] is a gateway provided by Braintree Payments [http://www.braintreepayments.com/]
to services which are willing to take the burden of PCI compliance. This does not involve
any redirects and only Server to Server calls happen in the background.

Note

You will require the official braintree [http://pypi.python.org/pypi/braintree/] python package offered by Braintree
for this gateway to work.

Settings attributes required for this integration are:

		MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree.
Can be obtained from the account dashboard.

		PUBLIC_KEY: The public key provided by Braintree through their account
dashboard.

		PRIVATE_KEY: The private key provided by Braintree through their account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {
 "braintree_payments": {
 "MERCHANT_ACCOUNT_ID": "???",
 "PUBLIC_KEY": "???",
 "PRIVATE_KEY": "???"
 }
 ...
}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",
 month=10, year=2011,
 number="4111111111111111",
 verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {
 "customer": {
 "name": "John Doe",
 "email": "john.doe@example.com",
 },
 }
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {
 "customer": {
 "name": "John Doe",
 "email": "john.doe@example.com",
 },
 "recurring": {
 "plan_id": "test_plan",
 "trial_duration": 2,
 "trial_duration_unit": "month",
 "number_of_billing_cycles": 12,
 },
 }
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

 © Copyright 2012, Team Agiliq.
 Created using Sphinx 1.3.5.

search.html

 Navigation

 		
 index

 		Merchant Documentation 0.07 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Team Agiliq.
 Created using Sphinx 1.3.5.

_static/down-pressed.png

gateways.html

 Navigation

 		
 index

 		Merchant Documentation 0.07 documentation »

Gateways

Gateways are the payment processors implemented in Merchant [http://github.com/agiliq/merchant]. This is
implemented as a class so that it is easy to extend and create as many
gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following
methods and attributes.

Attribute Reference

		test_mode: This boolean attribute signifies if the gateway is in the test
mode. By default, it looks up this value from the MERCHANT_TEST_MODE
attribute from the settings file. If the MERCHANT_TEST_MODE attribute is not
found in the settings file, the default value is True indicating that the
gateway is in the test mode. So do not forget to either set the attribute to
True in the subclass or through the settings file.

		default_currency: This is the currency in which the transactions are settled
ie the currency in which the payment gateway sends the invoice, transaction reports
etc. This does not prevent the developer from charging a customer in other currencies
but the exchange rate conversion has to be manually handled by the developer. This
is a string, for example “USD” for US Dollar.

		supported_countries: This is a list of supported countries that are handled
by the payment gateway. This should contain a list of the country codes as prescribed
by the ISO 3166-alpha 2 standard [http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2]. The billing.utils.countries contains a mapping
of the country names and ISO codes.

		supported_cardtypes: This is a list of supported card types handled by the
payment gateway. This should contain a list of instances of the
CreditCard class.

		homepage_url: A string pointing to the URL of the payment gateway. This is just
a helper attribute that is currently not used.

		display_name: A string that contains the name of the payment gateway. Another
helper attribute that is currently not used.

		application_id: An application name or unique identifier for the gateway. Yet
another helper attribute not currently used.

Method Reference

		validate_card(credit_card): This method validates the supplied card by
checking if it is supported by the gateway (through the supported_cardtypes
attribute) and calls the is_valid method of the card and returns a boolean.
if the card is not supported by the gateway, a CardNotSupported exception
is raised.

		service_url: A property that returns the url to which the credit card
and other transaction related details are submitted.

		purchase(money, credit_card, options = None): A method that charges the
given card (one-time) for the given amount money using the options
provided. Subclasses have to implement this method.

		authorize(money, credit_card, options = None): A method that authorizes
(for a future transaction) the credit card for the amount money using
the options provided. Subclasses have to implement this method.

		capture(money, authorization, options = None): A method that captures
funds from a previously authorized transaction using the options
provided. Subclasses have to implement this method.

		void(identification, options = None): A method that nulls/voids/blanks
an authorized transaction identified by identification to prevent a
subsequent capture. Subclasses have to implement this method.

		credit(money, identification, options = None): A method that refunds a
settled transaction with the transacation id identification and given
options. Subclasses must implement this method.

		recurring(money, creditcard, options = None): A method that sets up a
recurring transaction (or a subscription). Subclasses must implement
this method.

		store(creditcard, options = None): A method that stores the credit
card and user profile information on the payment gateway’s servers
for future reference. Subclasses must implement this method.

		unstore(identification, options = None): A method that reverses the
store method’s results. Subclasses must implement this method.

The options dictionary passed to the above methods consists of the following
keys:

		order_id: A unique order identification code (usually set by the gateway).

		ip: The IP address of the customer making the purchase. This is required
by certain gateways like PayPal.

		customer: The name, customer number, or other information that identifies
the customer. Optional.

		invoice: The invoice code/number (set by the merchant).

		merchant: The name or description of the merchant offering the product.

		description: A description of the product or transaction.

		email: The email address of the customer. Required by a few gateways.

		currency: Required when using a currency with a gateway that supports
multiple currencies. If not specified, the value of the default_currency
attribute of the gateway instance is used.

		billing_address: A dictionary containing the billing address of the
customer. Generally required by gateways for address verification (AVS) etc.

		shipping_address: A dictionary containing the shipping address of the
customer. Required if the merchant requires shipping of products and where
billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have
the following keys:

		name: The full name of the customer.

		company: The company name of the customer. Required by a few gateways.

		address1: The primary street address of the customer. Required by many
gateways.

		address2: Additional line for the address. Optional.

		city: The city of the customer.

		state: The state of the customer.

		country: The ISO 3166-alpha 2 standard [http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2] code for the country of the
customer.

		zip: The zip or postal code of the customer.

		phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing
the following keys:

		status: Indicating if the transaction is a “SUCCESS” or a
“FAILURE“

		response: The response object for the transaction. Please consult
the respective gateway’s documentation to learn more about it.

Helper functions

		get_gateway(name, *args, **kwargs): A helper function that loads the
gateway class by the name and initializes it with the args and kwargs.

 © Copyright 2012, Team Agiliq.
 Created using Sphinx 1.3.5.

_static/file.png

gateways/stripe_payment.html

 Navigation

 		
 index

 		Merchant Documentation 0.07 documentation »

Stripe Payments

Stripe Payments [https://stripe.com/] is a gateway provided by Stripe [http://pypi.python.org/pypi/stripe/]
to services which are willing to take the burden of PCI compliance. This does not involve
any redirects and only Server to Server calls happen in the background.

Note

You will require the official stripe [http://pypi.python.org/pypi/stripe/] python package offered by Stripe
for this gateway to work.

Settings attributes required for this integration are:

		API_KEY: The merchant api key is provided by Stripe.
Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {
 "stripe": {
 "API_KEY": "???",
 "PUBLISHABLE_KEY": "???", # Used for stripe integration
 }
 ...
}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",
 month=10, year=2012,
 number="4242424242424242",
 verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

 © Copyright 2012, Team Agiliq.
 Created using Sphinx 1.3.5.

_static/plus.png

gateways/paylane_gateway.html

 Navigation

 		
 index

 		Merchant Documentation 0.07 documentation »

Paylane Gateway

Paylane [https://paylane.com/] is a payment processor focussed mainly in Europe.

Note

You will require suds [https://fedorahosted.org/suds] python package to work with the
the SOAP interface.

Settings attributes required for this gateway are:

		USERNAME: The username provided by Paylane while signing
up for an account.

		PASSWORD: The password you set from the merchant admin
panel. Not to be confused with the merchant login password.

		WSDL (optional): The location of the WSDL file. Defaults
to https://direct.paylane.com/wsdl/production/Direct.wsdl.

		SUDS_CACHE_DIR (optional): The location of the suds
cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {
 "paylane": {
 "USERNAME": "???",
 "PASSWORD": "???",
 }
 ...
}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",
 month=10, year=2012,
 number="4242424242424242",
 verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

 © Copyright 2012, Team Agiliq.
 Created using Sphinx 1.3.5.

_static/up-pressed.png

offsite/eway_au.html

 Navigation

 		
 index

 		Merchant Documentation 0.07 documentation »

eWAY Payment Integration

The eWAY integration functionality interfaces with eWAY’s Merchant Hosted
Payments facility. Their service makes it extremely easy to be PCI-DSS
compliant by allowing you to never receive customer credit card information.

Note

This integration requires the suds [https://fedorahosted.org/suds/] package. Please install it before you
use this integration.

The basic data flow is as follows:

		Request an access code from eWAY.

		Create an HTML form with the access code and user credit card fields.

		Encourage the user to submit the form to eWAY and they’ll be redirected back
to your site.

		Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
 "eway": {
 "CUSTOMER_ID": "???",
 "USERNAME": "???",
 "PASSWORD": "???",
 }
}

The integration class is used to request an access code and also to check its
success after the redirect:

		
class EwayIntegration(access_code=None)

		Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using
check_transaction().

		
request_access_code(payment, redirect_url, customer=None, billing_country=None, ip_address=None)

		Requests an access code from eWAY to use with a transaction.

		Parameters:		
		payment (dict) – Information about the payment

		redirect_url (unicode) – URL to redirect the user to after payment

		customer (dict) – Customer related information

		billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s billing country

		ip_address (unicode) – Customer’s IP address

		Returns:		(access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

		Key
		Notes

		token_customer_id
		

		save_token
		

		reference
		

		title
		required for save_token

		first_name
		required for save_token

		last_name
		required for save_token

		company_name
		

		job_description
		

		street
		

		city
		

		state
		

		postal_code
		

		country
		required for save_token

		email
		

		phone
		

		mobile
		

		comments
		

		fax
		

		url
		

Supported keys in payment:

		Key
		Notes

		total_amount
		required (must be cents)

		invoice_number
		

		invoice_description
		

		invoice_reference
		

To add extra security, it’s a good idea to specify ip_address. The
value is given to eWAY to allow them to ensure that the POST request they
receive comes from the given address. E.g.:

def payment(request):
 integration = get_integration("eway_au")
 access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
 # ...

Returned value

The returned value is a tuple (access_code, customer). access_code
is the access code granted by eWAY that must be included in the HTML form,
and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is
particularly useful if you make use of save_token and
token_customer_id to save customer details on eWAY’s servers. Keys in
the dict are:

		token_customer_id

		save_token

		reference

		title

		first_name

		last_name

		company_name

		job_description

		street

		city

		state

		postal_code

		country – e.g. au

		email

		phone

		mobile

		comments

		fax

		url

		card_number – e.g. 444433XXXXXX1111

		card_name

		card_expiry_month

		card_expiry_year

		
check_transaction()

		Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

		Returns:		dict

		Key
		Example

		access_code
		

		authorisation_code
		"198333"

		response_code
		"00"

		response_message
		"Transaction Approved" or None

		option_1
		"a1b2c3"

		option_2
		

		option_3
		

		invoice_number
		"19832261"

		invoice_reference
		"19832261-AA12/1"

		total_amount
		"1000"

		transaction_id
		"7654321"

		transaction_status
		True

		error_message
		

		token_customer_id
		"1234567890123456"

		beagle_score
		10.23

Example:

views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
 # Pretend some 'Order' model exists with a 'total_price' in dollars
 order = get_object_or_404(Order, pk=cart_pk)

 integration = get_integration("eway_au")
 access_code, customer = integration.request_access_code(
 customer={"first_name": "Bradley", "last_name": "Ayers"},
 payment={"total_amount": order.total_price * 100},
 return_url=reverse(payment_done))
 request.session["eway_access_code"] = integration.access_code
 return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
 order = get_object_or_404(Order, pk=cart_pk)
 access_code = request.session["access_code"]
 integration = get_integration("eway_au", access_code=access_code)
 # Retrieve transaction status from eWAY
 status = integration.check_transaction()
 if status["response_code"] in ("00", "08", "11"):
 order.is_paid = True
 order.save()
 template = "receipt.html"
 else:
 template = "payment_failed.html"
 return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment
HTML form directly to eWAY. The helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
 {{ integration.generate_form.as_p }}
 <input type="submit"/>
</form>

 © Copyright 2012, Team Agiliq.
 Created using Sphinx 1.3.5.

_static/down.png

_static/up.png

offsite/google_checkout.html

 Navigation

 		
 index

 		Merchant Documentation 0.07 documentation »

Google Checkout

Google Checkout [https://checkout.google.com/] is an online payment processing solution provided by Google.
The API docs for Google Checkout are available here [http://code.google.com/apis/checkout/].

After a transaction, Google Checkout sends a mail to the subscriber, updates
the Merchant Center [http://code.google.com/apis/checkout/developer/Google_Checkout_Glossary.html#merchant_center] dashboard and pings the merchant at the Notification
URL. The HTTP POST data is stored in the GCResponse model instance that
can be viewed from the django admin.

The setting attributes required for this integration are:

		MERCHANT_ID: The merchant id assigned by Google after
signing up for the service.

		MERCHANT_KEY: A secret key assigned by Google after
signing up for the service.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {
 "google_checkout": {
 "MERCHANT_ID": "???",
 "MERCHANT_KEY": "???"
 }
 ...
}

Example

In urls.py:

from billing import get_integration
gc = get_integration("google_checkout")
urlpatterns += patterns('',
 (r'^gc/', include(gc.urls)),
 # You'll have to add /gc/gc-notify-handler/ to the
 # Google Checkout settings->Integration page for the callback URL
)

In views.py:

>>> from billing import get_integration
>>> gc = get_integration("google_checkout")
>>> gc.add_fields({'items': [{
... "amount": 100,
... "name": "Name of the Item",
... "description": "Item's description",
... "currency": "USD",
... "id": "item_id",
... "quantity": 1,
... "private-item-data": "Popular item - order more if needed"},
...
...],
... "return_url": "http://example.com/return/", })
>>> return render_to_response("some_template.html",
... {"obj": gc},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://sandbox.google.com/checkout/api/checkout/v2/checkout/Merchant/646831507676008" method="post">
 <input type="hidden" name="cart" value="PD94bWwgdmVyc2lvbj0iMS4wIiBlbmNvZGluZz0idXRmLTgiPz48Y2hlY2tvdXQtc2hvcHBpbmctY2FydCB4bWxucz0iaHR0cDovL2NoZWNrb3V0Lmdvb2dsZS5jb20vc2NoZW1hLzIiPjxzaG9wcGluZy1jYXJ0PjxpdGVtcz48aXRlbT48aXRlbS1uYW1lPm5hbWUgb2YgdGhlIGl0ZW08L2l0ZW0tbmFtZT48aXRlbS1kZXNjcmlwdGlvbj5JdGVtIGRlc2NyaXB0aW9uPC9pdGVtLWRlc2NyaXB0aW9uPjx1bml0LXByaWNlIGN1cnJlbmN5PSJVU0QiPjE8L3VuaXQtcHJpY2U+PHF1YW50aXR5PjE8L3F1YW50aXR5PjxtZXJjaGFudC1pdGVtLWlkPjk5OUFYWjwvbWVyY2hhbnQtaXRlbS1pZD48L2l0ZW0+PC9pdGVtcz48L3Nob3BwaW5nLWNhcnQ+PC9jaGVja291dC1zaG9wcGluZy1jYXJ0Pg==" />
 <input type="hidden" name="signature" value="3jkvhENlILC3GTVNrXwmvldds4U=" />
 <input type="image" name="Google Checkout" alt="Fast checkout through Google" src="http://sandbox.google.com/checkout/buttons/checkout.gif?merchant_id=646831507676008&w=180&h=46&style=white&variant=text&loc=en_US" height="46" width="180" />
</form>

Private Data:

If you need to add some extra information (order number, etc) you can use the private data field.

The private_data can contain any well-formed XML sequence that should accompany an order. Google Checkout will return this XML in the <merchant-calculation-callback> and the <new-order-notification> for the order.

Example:

>>> gc.add_fields({'items': ...,
 'private_data': "my order number 76543",
})

Item

You can do the same thing on items as well using the private-item-data field on item. (see view.py example above)

Digital Content:

The following digital goods identifying are supported: email delivery, key/URL delivery, description-based delivery

Subscriptions:

The following subscriptions types are supported: google-handled, merchant-handled

Taxes:

The following tax methods are supported: default-tax-table and alternate-tax-tables

default-tax-table:

Here are the examples from the Google Checkouts Developer Docs [https://developers.google.com/checkout/developer/Google_Checkout_XML_API_Taxes#XML_Examples_for_Tax_Tables] converted to django-merchant

These are only showing the shipping methods section, you still need items and everything else.

Example 1: Charging a single tax rate in one state:

The following example explains how to charge a single tax rate in one state. The example is for a merchant in Connecticut, where there is a 6 percent sales tax. The example contains a single tax rule. In addition, since shipping charges in Connecticut are taxed, the <shipping-taxed> tag is included in this request with a value of true. (If shipping charges are not subject to tax in a state where you charge tax, you can omit the <shipping-taxed> tag from the tax rule for that state or set the tag’s value to false.)

XML:

<tax-tables>
 <default-tax-table>
 <tax-rules>

 <default-tax-rule>
 <shipping-taxed>true</shipping-taxed>
 <rate>0.0600</rate>
 <tax-area>
 <us-state-area>
 <state>CT</state>
 </us-state-area>
 </tax-area>
 </default-tax-rule>

 </tax-rules>
 </default-tax-table>
 </tax-tables>

Python:

>>> gc.add_fields({'items': ... ,
 'tax-tables': {
 'default-tax-table': {
 'tax-rules': [
 {
 'shipping-taxed': True,
 'rate': 0.0600,
 'tax-area': {
 'us-state-area': ['CT'],
 }
 }
]
 }
 }
 })

Example 2: Charging tax in two non-overlapping geographic areas

The following example demonstrates how to create tax tables if you charge tax in more than one geographic area. In this example, the two areas are Connecticut and Maryland. Since the areas do not overlap – a shipping address can only be associated with one state – the tax rules can be specified in any order. As in the previous example, shipping charges in Connecticut are taxed; however, shipping charges in Maryland are not subject to tax.

XML:

<tax-tables>
 <default-tax-table>
 <tax-rules>

 <default-tax-rule>
 <shipping-taxed>true</shipping-taxed>
 <rate>0.0600</rate>
 <tax-area>
 <us-state-area>
 <state>CT</state>
 </us-state-area>
 </tax-area>
 </default-tax-rule>

 <default-tax-rule>
 <rate>0.0500</rate>
 <tax-area>
 <us-state-area>
 <state>MD</state>
 </us-state-area>
 </tax-area>
 </default-tax-rule>

 </tax-rules>
 </default-tax-table>
</tax-tables>

Python:

>>> gc.add_fields({'items': ... ,
 'tax-tables': {
 'default-tax-table': {
 'tax-rules': [
 {
 'shipping-taxed': True,
 'rate': 0.0600,
 'tax-area': {
 'us-state-area': ['CT'],
 }
 },
 {
 'rate': 0.0500,
 'tax-area': {
 'us-state-area': ['MD'],
 }
 }
]
 }
 }
 })

Example 3: Charging tax in two overlapping geographic areas

The following example also demonstrates how to create tax tables if you charge tax in more than one geographic area. However, in this example, the two areas are in the same state.

		The first area defines a set of zip codes in Manhattan, where there is an 8.375 percent sales tax.

		The second area defines a rule for charging 4 percent sales tax in the state of New York.

Since Google will select the first tax rule that matches the shipping address for the order, the tax rule that defines the narrower geographic area must be listed first. (See the Ordering Tax Rules in XML Requests section for more information.)

XML:

<tax-tables>
 <default-tax-table>
 <tax-rules>

 <default-tax-rule>
 <shipping-taxed>false</shipping-taxed>
 <rate>0.08375</rate>
 <tax-area>
 <us-zip-area>
 <zip-pattern>100*</zip-pattern>
 </us-zip-area>
 </tax-area>
 </default-tax-rule>

 <default-tax-rule>
 <shipping-taxed>true</shipping-taxed>
 <rate>0.0400</rate>
 <tax-area>
 <us-state-area>
 <state>NY</state>
 </us-state-area>
 </tax-area>
 </default-tax-rule>

 </tax-rules>
 </default-tax-table>
</tax-tables>

Python:

>>> gc.add_fields({'items': ... ,
 'tax-tables': {
 'default-tax-table': {
 'tax-rules': [
 {
 'shipping-taxed': False,
 'rate': 0.08375,
 'tax-area': {
 'us-zip-area': ['100*'],
 }
 },
 {
 'shipping-taxed': True,
 'rate': 0.0400,
 'tax-area': {
 'us-state-area': ['NY'],
 }
 }
]
 }
 }
 })

alternate-tax-tables:

Alternate tax tables are good for dealing with non-standard taxing issues. For example, having taxable, and tax free items in the same shopping cart.

Example 4: Alternate tax rules

This example shows how to create an alternate tax table for an item that is tax-exempt. The tax tables in this example indicate that the merchant charges sales tax in Connecticut and Maryland. In Connecticut, sales of bicycle helmets are tax-exempt. (Google does not return any search results indicating that bicycle helmet sales are also tax-exempt in Maryland.)

In this example, the XML contains an alternate tax table for bicycle helmets. That tax table contains one alternate tax rule, which indicates that Connecticut does not charge tax for items associated with that tax table. Please note that value of the <alternate-tax-table> tag’s standalone attribute is set to false, which is that element’s default value. As a result, if an item specifies the “bicycle helmets” tax table, and there is no alternate tax rule for the shipping address, Google will use the default tax table to calculate tax for the item. Therefore, if the item is shipped to Connecticut, no tax will be charged. However, if the item is shipped to Maryland, the regular tax rate will be assessed.

XML:

<shopping-cart>
 <items>
 <item>
 <item-name>Bike Helmet</item-name>
 <item-description>Black helmet that is tax-exempt in CT but not MD.</item-description>
 <unit-price currency="USD">49.99</unit-price>
 <quantity>1</quantity>
 <tax-table-selector>bicycle_helmets</tax-table-selector>
 </item>
 </items>
</shopping-cart>
<checkout-flow-support>
 <merchant-checkout-flow-support>
 <tax-tables>
 <default-tax-table>
 <tax-rules>

 <default-tax-rule>
 <shipping-taxed>true</shipping-taxed>
 <rate>0.0600</rate>
 <tax-area>
 <us-state-area>
 <state>CT</state>
 </us-state-area>
 </tax-area>
 </default-tax-rule>

 <default-tax-rule>
 <rate>0.0500</rate>
 <tax-area>
 <us-state-area>
 <state>MD</state>
 </us-state-area>
 </tax-area>
 </default-tax-rule>

 </tax-rules>
 </default-tax-table>

 <alternate-tax-tables>
 <alternate-tax-table standalone="false" name="bicycle_helmets">
 <alternate-tax-rules>
 <alternate-tax-rule>
 <rate>0</rate>
 <tax-area>
 <us-state-area>
 <state>CT</state>
 </us-state-area>
 </tax-area>
 </alternate-tax-rule>
 </alternate-tax-rules>
 </alternate-tax-table>
 </alternate-tax-tables>

 </tax-tables>
 </merchant-checkout-flow-support>
</checkout-flow-support>

Python:

>>> gc.add_fields({'items': [{
 "amount": 49.99,
 "name": "Bike Helmet",
 "description": "Black helmet that is tax-exempt in CT but not MD.",
 "currency": "USD",
 "id": "item_id",
 "quantity": 1,
 "tax-table-selector": "bicycle_helmets"
 }],
 'tax-tables': {
 'default-tax-table': {
 'tax-rules': [
 {
 'shipping-taxed': True,
 'rate': 0.06,
 'tax-area': {
 'us-state-area': ['CT'],
 }
 },
 {
 'rate': 0.05,
 'tax-area': {
 'us-state-area': ['MD'],
 }
 }
]
 },
 'alternate-tax-tables': [
 {'name': 'bicycle_helmets',
 'standalone': False,
 'alternative-tax-rules': [
 { 'rate': 0,
 'tax-area': {
 'us-state-area': ['CT'],
 }
 }
]
 }
]
 })

Example 5: Alternate tax rules for items that are always tax-exempt

This example shows how to identify an item that is always tax-exempt, regardless of the shipping address. The tax tables indicate that the merchant charges sales tax in Connecticut and Maryland, and sales of nonprescription drugs are tax-exempt in both states. In this example, the XML contains an alternate tax table for tax-exempt goods, and that tax table does not specify any alternate tax rules. However, since the value of the <alternate-tax-table> tag’s standalone attribute is set to true, Google will not calculate taxes for an item if it specifies the tax-exempt tax table and there is no alternate tax rule for the shipping address. Since the item in the example is always tax-exempt for this merchant, the tax table does not need to specify any tax rules.

XML:

<shopping-cart>
 <items>
 <item>
 <item-name>Tylenol Caplets</item-name>
 <item-description>Fast relief without a prescription.</item-description>
 <unit-price currency="USD">7.99</unit-price>
 <quantity>1</quantity>
 <tax-table-selector>tax_exempt</tax-table-selector>
 </item>
 </items>
</shopping-cart>
<checkout-flow-support>
 <merchant-checkout-flow-support>
 <tax-tables>
 <default-tax-table>
 <tax-rules>

 <default-tax-rule>
 <shipping-taxed>true</shipping-taxed>
 <rate>0.0600</rate>
 <tax-area>
 <us-state-area>
 <state>CT</state>
 </us-state-area>
 </tax-area>
 </default-tax-rule>

 <default-tax-rule>
 <rate>0.0500</rate>
 <tax-area>
 <us-state-area>
 <state>MD</state>
 </us-state-area>
 </tax-area>
 </default-tax-rule>

 </tax-rules>
 </default-tax-table>

 <alternate-tax-tables>
 <alternate-tax-table standalone="true" name="tax_exempt">
 <alternate-tax-rules/>
 </alternate-tax-table>
 </alternate-tax-tables>
 </tax-tables>
 </merchant-checkout-flow-support>
</checkout-flow-support>

Python:

>>> gc.add_fields({'items': [{
 "amount": 7.99,
 "name": "Tylenol Caplets",
 "description": "Fast relief without a prescription.",
 "currency": "USD",
 "id": "item_id",
 "quantity": 1,
 "tax-table-selector": "tax_exempt"
 }],
 'tax-tables': {
 'default-tax-table': {
 'tax-rules': [
 {
 'shipping-taxed': True,
 'rate': 0.06,
 'tax-area': {
 'us-state-area': ['CT'],
 }
 },
 {
 'rate': 0.05,
 'tax-area': {
 'us-state-area': ['MD'],
 }
 }
]
 },
 'alternate-tax-tables': [
 {'name': 'tax_exempt',
 'standalone': True,
 }
]
 })

Example 6: Applying a tax rule in multiple geographic areas

This example demonstrates how to use the <tax-areas> tag to apply a tax rule in multiple geographic areas. This example applies the same tax rule in multiple European countries. The same principle could be used to apply a tax rule in multiple U.S. states or zip code ranges.

XML:

<tax-tables>
 <default-tax-table>
 <tax-rules>

 <default-tax-rule>
 <shipping-taxed>true</shipping-taxed>
 <rate>0.175</rate>
 <tax-areas>
 <postal-area>
 <country-code>DE</country-code>
 </postal-area>
 <postal-area>
 <country-code>ES</country-code>
 </postal-area>
 <postal-area>
 <country-code>GB</country-code>
 </postal-area>
 </tax-areas>
 </default-tax-rule>

 </tax-rules>
 </default-tax-table>
</tax-tables>

Python:

>>> gc.add_fields({'items': ... ,
 'tax-tables': {
 'default-tax-table': {
 'tax-rules': [
 {
 'shipping-taxed': True,
 'rate': 0.175,
 'tax-area': {
 'postal-area': [
 {'country-code': 'DE'},
 {'country-code': 'ES'},
 {'country-code': 'GB'},
],
 },
 },
]
 },
 }
 })

Example 7: Alternate tax tables for U.K. merchants

This example shows a common way to structure tax tables in the United Kingdom. The order includes three items. The first item uses the default tax rate of 17.5 percent, the second item uses a reduced tax rate of 5 percent, and the third item is untaxed. Note that the cost of each item is £10.00. When you click the Checkout button for this order, Google Checkout displays the price for each item inclusive of tax.

XML:

<shopping-cart>
 <items>
 <item>
 <item-name>Regular Test Item</item-name>
 <item-description>Regular Test Item</item-description>
 <unit-price currency="GBP">10.0</unit-price>
 <quantity>1</quantity>
 </item>
 <item>
 <item-name>Reduced Test Item</item-name>
 <item-description>Reduced Test Item</item-description>
 <unit-price currency="GBP">10.0</unit-price>
 <quantity>1</quantity>
 <tax-table-selector>reduced</tax-table-selector>
 </item>
 <item>
 <item-name>Zero Test Item</item-name>
 <item-description>Zero Test Item</item-description>
 <unit-price currency="GBP">10.0</unit-price>
 <quantity>1</quantity>
 <tax-table-selector>tax_exempt</tax-table-selector>
 </item>
 </items>
</shopping-cart>
<checkout-flow-support>
 <merchant-checkout-flow-support>
 <tax-tables>
 <default-tax-table>
 <tax-rules>

 <default-tax-rule>
 <shipping-taxed>true</shipping-taxed>
 <rate>0.175</rate>
 <tax-area>
 <world-area/>
 </tax-area>
 </default-tax-rule>

 </tax-rules>
 </default-tax-table>

 <alternate-tax-tables>
 <alternate-tax-table name="reduced" standalone="true">
 <alternate-tax-rules>
 <alternate-tax-rule>
 <rate>0.05</rate>
 <tax-area>
 <world-area/>
 </tax-area>
 </alternate-tax-rule>
 </alternate-tax-rules>
 </alternate-tax-table>

 <alternate-tax-table standalone="true" name="tax_exempt">
 <alternate-tax-rules/>
 </alternate-tax-table>
 </alternate-tax-tables>

 </tax-tables>
 </merchant-checkout-flow-support>
</checkout-flow-support>

Python:

>>> gc.add_fields({'items': [{
 "amount": 10.0,
 "name": "Regular Test Item",
 "description": "Regular Test Item",
 "currency": "GBP",
 "quantity": 1,
 },{
 "amount": 10.0,
 "name": "Reduced Test Item",
 "description": "Reduced Test Item",
 "currency": "GBP",
 "quantity": 1,
 "tax-table-selector": "reduced"
 },{
 "amount": 10.0,
 "name": "Zero Test Item",
 "description": "Zero Test Item",
 "currency": "GBP",
 "quantity": 1,
 "tax-table-selector": "tax_exempt"
 }],
 'tax-tables': {
 'default-tax-table': {
 'tax-rules': [
 {
 'shipping-taxed': True,
 'rate': 0.175,
 'tax-area': {
 'world-area': True,
 },
 },
]
 },
 'alternate-tax-tables': [
 {'name': 'reduced',
 'standalone': True,
 'alternative-tax-rules': [
 { 'rate': 0.05,
 'tax-area': {
 'world-area': True,
 }
 },
]
 },
 { 'name': 'tax_exempt',
 'standalone': True,
 }
]
 })

Shipping:

The following shipping methods are supported: flat-rate-shipping, merchant-calculated-shipping, pickup. carrier-calculated-shipping is not supported yet.

Flat-rate shipping + Pickup

Here are the examples from the Google Checkouts Developer Docs [https://developers.google.com/checkout/developer/Google_Checkout_XML_API_Flat_Rate_Shipping] converted to django-merchant.

These are only showing the shipping methods section, you still need items and everything else.

Example 1 - Using Flat-rate Shipping:

The following example shows two flat-rate shipping methods. The first shipping method, which is for UPS Next Day Air shipping, costs $20.00. The second option, which is for UPS Ground Shipping, costs $15.00.

XML:

<shipping-methods>
 <flat-rate-shipping name="UPS Next Day Air">
 <price currency="USD">20.00</price>
 </flat-rate-shipping>
 <flat-rate-shipping name="UPS Ground">
 <price currency="USD">15.00</price>
 </flat-rate-shipping>
</shipping-methods>

Python:

>>> gc.add_fields({'items': ... ,
 'shipping-methods': [
 {'shipping_type':'flat-rate-shipping',
 'name':"UPS Next Day Air",
 'currency':"USD",
 'price':20.00},
 {'shipping_type':'flat-rate-shipping',
 'name':"UPS Ground",
 'currency':"USD",
 'price':15.00},
]})

Example 2 - Using Shipping Restrictions:

In this example, the merchant offers the same two shipping options as in example 1. However, in this example, the merchant has added shipping restrictions to both shipping methods. These restrictions specify that neither option will be offered if the shipping address is a P.O. box. In addition, the next-day shipping option will also be unavailable if the shipping address is in either Alaska or Hawaii.

The following list explains how Google Checkout will handle different shipping addresses based on the XML in the example:

		Google Checkout will not allow the buyer to complete the order if the selected shipping address is a P.O. box.

		If the buyer selects a shipping address in Alaska or Hawaii (that is not a P.O. box), then Google Checkout will only offer the second shipping option (for ground shipping) to the buyer.

		If the buyer selects any shipping address that is not a P.O. box and is not in Alaska or Hawaii, then Google Checkout will offer both shipping options to the buyer.

XML:

<shipping-methods>
 <flat-rate-shipping name="UPS Next Day Air">
 <price currency="USD">20.00</price>
 <shipping-restrictions>
 <excluded-areas>
 <us-state-area>
 <state>AK</state>
 </us-state-area>
 <us-state-area>
 <state>HI</state>
 </us-state-area>
 </excluded-areas>
 <allow-us-po-box>false</allow-us-po-box>
 </shipping-restrictions>
 </flat-rate-shipping>

 <flat-rate-shipping name="UPS Ground">
 <price currency="USD">15.00</price>
 <shipping-restrictions>
 <allow-us-po-box>false</allow-us-po-box>
 </shipping-restrictions>
 </flat-rate-shipping>
</shipping-methods>

Python:

>>> gc.add_fields({'items': ... ,
 'shipping-methods': [
 {'shipping_type':'flat-rate-shipping',
 'name':"UPS Next Day Air",
 'currency':"USD",
 'price':20.00,
 'shipping-restrictions': {
 'allow-us-po-box': False,
 'excluded-areas': {
 'us-state-area' : ['AK', 'HI']
 }
 }
 },
 {'shipping_type':'flat-rate-shipping',
 'name':"UPS Ground",
 'currency':"USD",
 'price':15.00,
 'shipping-restrictions': {
 'allow-us-po-box': False,
 }
 },
]})

Example 3 - Offering Delivery or Pickup with Flat-Rate Shipping Options:

This example demonstrates how you could offer free delivery using a flat-rate shipping method. The example also includes a <pickup> shipping method. In this example, the request uses shipping restrictions to specify that delivery is only available in two zip codes in Manhattan’s Upper East Side neighborhood. You can charge a fee for delivery by setting the value of the <price> tag to the delivery fee amount.

XML:

<shipping-methods>
 <flat-rate-shipping name="Delivery">
 <price currency="USD">0.00</price>
 <shipping-restrictions>
 <allowed-areas>
 <us-zip-area>
 <zip-pattern>10021</zip-pattern>
 </us-zip-area>
 <us-zip-area>
 <zip-pattern>10022</zip-pattern>
 </us-zip-area>
 </allowed-areas>
 <allow-us-po-box>false</allow-us-po-box>
 </shipping-restrictions>
 </flat-rate-shipping>

 <pickup name="Pickup">
 <price currency="USD">0.00</price>
 </pickup>
 </shipping-methods>

Python:

>>> gc.add_fields({'items': ... ,
 'shipping-methods': [
 {'shipping_type':'flat-rate-shipping',
 'name':"Delivery",
 'currency':"USD",
 'price':0.00,
 'shipping-restrictions': {
 'allow-us-po-box': False,
 'allowed-areas': {
 'us-zip-area' : [10021, 10022]
 }
 }
 },
 {'shipping_type':'pickup',
 'name':"Pickup",
 'currency':"USD",
 'price':0.00,
 },
]})

Merchant-calculated Shipping

Here are the examples from the Google Checkouts Developer Docs [https://developers.google.com/checkout/developer/Google_Checkout_XML_API_Merchant_Calculated_Shipping] converted to django-merchant.

These are only showing the shipping methods section, you still need items and everything else.

Example 1 - Using Merchant Calculated Shipping

The following example shows an order for a U.S. merchant with one item and two merchant-calculated shipping methods. The first shipping method, which is for UPS Next Day Air shipping, has a default price of $20.00. This option also will not be offered if the shipping address is a P.O. box in the United States. The second option, which is for UPS Ground Shipping, has a default price of $15.00. The example also specifies that the merchant will calculate taxes as well as price adjustments associated with coupons or gift certificates.

XML:

<shipping-methods>

 <merchant-calculated-shipping name="UPS Next Day Air">
 <price currency="USD">20.00</price>
 <address-filters>
 <allow-us-po-box>false<allow-us-po-box>
 </address-filters>
 </merchant-calculated-shipping>

 <merchant-calculated-shipping name="UPS Ground">
 <price currency="USD">15.00</price>
 </merchant-calculated-shipping>

 </shipping-methods>

Python:

>>> gc.add_fields({'items': ... ,
'shipping-methods': [
 {'shipping_type':'merchant-calculated-shipping',
 'name':"UPS Next Day Air",
 'currency':"USD",
 'price':20.00,
 'address-filters': {
 'allow-us-po-box': False,
 }
 },
 {'shipping_type':'merchant-calculated-shipping',
 'name':"UPS Ground",
 'currency':"USD",
 'price':15.00,
 },
]})

Example 2 - Using Address Filters and Shipping Restrictions:

In this example, the merchant offers the same two shipping options as in example 1. However, in this example, the merchant has added shipping restrictions to specify that the next-day shipping option will not be available if the <merchant-calculation-callback> request fails and the shipping address is in either Alaska or Hawaii.

The following list explains how Google Checkout will handle different shipping addresses based on the XML in the example:

		If the customer enters any U.S. postal address that is not a P.O. box, Google Checkout will send a callback request instructing the merchant to calculate shipping costs for both shipping options.

		If the callback request is successful, then Google will offer the two shipping options to the buyer using the shipping costs from the merchant’s <merchant-calculation-response>.

		If the callback request is not successful, and the shipping address is in the continental United States, Google will let the buyer choose either of the two shipping methods. In this case, the next-day shipping method will cost $20.00 and the ground shipping method will cost $15.00.

		If the callback request is not successful, and the shipping address is in Alaska or Hawaii, Google will only offer the second shipping option at a cost of $15.00.

		If the customer enters a U.S. postal address that is a P.O. box, Google Checkout will send a callback request instructing the merchant to calculate the shipping cost for the second shipping option, which is for ground shipping. Since the address filter for the first shipping option indicates that that option is not available for P.O. boxes, Google will not allow the customer to select that shipping option and will not ask the merchant to calculate the cost of that shipping option.

XML:

<shipping-methods>

 <merchant-calculated-shipping name="UPS Next Day Air">
 <price currency="USD">20.00</price>
 <address-filters>
 <allow-us-po-box>false<allow-us-po-box>
 </address-filters>
 <shipping-restrictions>
 <excluded-areas>
 <us-state-area>
 <state>AK</state>
 </us-state-area>
 <us-state-area>
 <state>HI</state>
 </us-state-area>
 </excluded-areas>
 </shipping-restrictions>
 </merchant-calculated-shipping>

 <merchant-calculated-shipping name="UPS Ground">
 <price currency="USD">15.00</price>
 </merchant-calculated-shipping>

 </shipping-methods>

Python:

>>> gc.add_fields({'items': ... ,
'shipping-methods': [
 {'shipping_type':'merchant-calculated-shipping',
 'name':"UPS Next Day Air",
 'currency':"USD",
 'price':20.00,
 'address-filters': {
 'allow-us-po-box': False,
 }
 },
 'shipping-restrictions': {
 'allow-us-po-box': False,
 'excluded-areas': {
 'us-state-area' : ['AK', 'HI']
 }
 }
 },
 {'shipping_type':'merchant-calculated-shipping',
 'name':"UPS Ground",
 'currency':"USD",
 'price':15.00,
 },
]})

 © Copyright 2012, Team Agiliq.
 Created using Sphinx 1.3.5.

